GRAVITATSION GIRDOBLI MIKRO GESLARNING KONUSSIMON VA SILINDIRSIMON HAVZALARINING GEOMETRIASI ENERGIYA SAMARADORLIGIGA TASIRI

Authors

  • Jamshidbek Xakimjon o‘g‘i Akmalov

Keywords:

gravity, vortex, basin, diameter, cone and cylinder, energy efficiency.

Abstract

Hydropower structures have been used for several centuries. Nevertheless, there are still water bodies with potential energy worldwide, such as low-head canals, streams, and rivers. Gravitational vortex micro hydropower plants belong to the category of devices operating in low-head water bodies. This article analyzes gravitational vortex micro hydropower plants with conical and cylindrical basins. The results indicate that the geometric shape and dimensions of the device influence its energy efficiency.

References

1. Gaiusobaseki, T. Hydropower opportuities in the water industry. Int. J. Environ. Sci. 2010, 1, 392–402.

2. Carrasco, J.L.; Pain, A. Hydropower (Small-Scale). 2020. Available online: https://sswm.info/water-nutrient-cycle/waterdistribution/hardwares/water-network-distribution/hydropower-%28small-scale%29 (accessed on 15 January 2023).

3. (2024). PROJECTS, Turbulent. Accessed: Dec. 10, 2024. [Online]. Available: https://www.turbulent.be/projects

4. D. S. Edirisinghe, H.-S. Yang, S. D. G. S. P. Gunawardane, and Y.-H. Lee, ‘‘Enhancing the performance of gravitational water vortex turbine by flow simulation analysis,’’ Renew. Energy, vol. 194, pp. 163–180, Jul. 2022, doi: 10.1016/j.renene.2022.05.053.

5. A. B. Timilsina, S. Mulligan, and T. R. Bajracharya, “Water vortex hydropower technology: a state-of-the-art review of developmental trends”, Clean Technologies and Environmental Policy, vol. 20, no. 8, pp. 1737–1760, 2018. doi: 10.1007/s10098-018-1589-0.

6. S. Mulligan and P. Hull, “Design and optimisation of a water vortex hydropower plant”, Material Science and Engineering A, vol. 6, p, 1, 2010.

7. S. Dhakal, A. B. Timilsina, R. Dhakal, D. Fuyal, T. R. Bajracharya, and H. P. Pandit, “Effect of dominant parameters for conical basin : Gravitational water vortex power plant specification of the appropriate boundary conditions at cells which coincide with or touch the domain boundary,” Proceedings of IOE Graduate Conference, pp. 380–386, 2014. doi: 10.13140/RG.2.1.1455.7843.

8. S. Mulligan, J. Casserly, and R. Sherlock, “Effects of geometry on strong free-surface vortices in subcritical approach flows,” Journal of Hydraulic Engineering, vol. 142, no. 11, p. 1-12, 2016. doi: 10.1061/(asce)hy.1943- 7900.0001194.

9. Dhakal, S.; Timilsina, A.B.; Dhakal, R.; Fuyal, D.; Bajracharya, T.R.; Pandit, H.P.; Amatya, N.; Nakarmi, A.M. Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant. Renew. Sustain. Energy Rev. 2015, 48, 662–669.

10. Dhakal, S.; Timilsina, A.B.; Dhakal, R.; Fuyal, D.; Bajracharya, T.R.; Pandit, H.P.; Amatya, N. Mathematical modeling, design optimization and experimental verification of conical basin: Gravitational water vortex power plant. In Proceedings of the Dalam World Largest Hydro Conference, Portland, OR, USA, 14–17 July 2015.

11. Srihari, P.; Narayana, P.; Kumar, K.; Raju, G.J.; Naveen, K.; Anand, P. Experimental study on vortex intensification of gravitational water vortex turbine with novel conical basin. AIP Conf. Proc. 2019, 2200, 020082 .

12. Bajracharya, T.R.; Shakya, S.R.; Timilsina, A.B.; Dhakal, J.; Neupane, S.; Gautam, A.; Sapkota, A. Effects of geometrical parameters in gravitational water vortex turbines with conical basin. J. Renew. Energy 2020, 2020, 5373784.

13. Sharif, A.; Siddiqi, M.U.R.; Tahir, M.; Ullah, U.; Aslam, A.; Tipu, A.K.; Arif, M.; Sheikh, N.A. Investigating the effect of inlet head and water pressure on the performance of single stage gravitational water vortex turbine. J. Mech. Eng. Res. Dev. 2021, 44, 156–168.

14. Sharif, A.; Tipu, J.A.K.; Arif, M.; Abbasi, M.S.; Jabbar, A.U.; Noon, A.A.; Siddiqi, M.U.R. Performance Evaluation of a Multi-Stage Gravitational Water Vortex Turbine with optimum number of Blades. J. Mech. Eng. Res. Dev. 2022, 45, 35–43.

15. Ullah, R.; Cheema, T.A. Experimental investigation of runner design parameters on the performance of vortex turbine. Eng. Proc. 2022, 23, 14.

16. Muhammad, R.; Sharif, A.; Siddiqi, M. Performance investigation of a single-stage gravitational water vortex turbine accounting for water vortex configuration and rotational speed. J. Eng. Appl. Sci. 2022, 41, 44–5.

17. Edirisinghe, D.S.; Yang, H.S.; Gunawardane, S.; Alkhabbaz, A.; Tongphong, W.; Yoon, M.; Lee, Y.H. Numerical and experimental investigation on water vortex power plant to recover the energy from industrial wastewater. Renew. Energy 2023, 204, 617–634.

18. Sinaga, D.A.; Septiyanto, M.D.; Arifin, Z.; Rusdiyanto, G.; Prasetyo, S.D.; Hadi, S. The Effect of Blade Distances on the Performance of Double-Stage Gravitational Water Vortex Turbine. J. Adv. Res. Fluid Mech. Therm. Sci. 2023, 109, 196–209.

19. Betancour, J.; Romero-Menco, F.; Velásquez, L.; Rubio-Clemente, A.; Chica, E. Design and optimization of a runner for a gravitational vortex turbine using the response surface methodology and experimental tests. Renew. Energy 2023, 210, 306–320.

20. Haryadi; Sugianto; Prasetyo; Setiawa, D. Experimental and Numerical Study on Conical Gravitational Water Vortex Turbine with 3D Runner. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 114, 1–14.

21. Srihari, P.S.V.V.; Narayana, P.S.V.V.S.; Sanathkumar, K.V.V.S.; Raju, G.J.; Naveen, K.; Anand, P. Experimental study on vortex intensification of gravitational water vortex turbine with novel conical basin. In Proceedings of the 1st International Conference on Manufacturing, Material Science and Engineering (ICMMSE-2019), Telangana, India, 16–17 August 2019; p. 020082.

22. Ruiz Sánchez, A.; Guevara Muñoz, A.; Sierra Del Rio, J.A.; Posada Montoya, J.A. Numerical comparison of two runners for gravitational vortex turbine. Eng. Trans. 2021,69,3–17.

23. Alfeuz, A.; Tamiri, F.; Yan, F.Y.; Muzammil, W.K.; Hong, M.G.J.; Mahmod, D.S.A.; Bohari, N.; Ismail, M.A. Performance Analysis of a Crossflow Vortex Turbine for a Gravitational Water Vortex Power Plant. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 116,13–26.

24. Obozov, A.; Akparaliev, R.; Mederov, T.; Ashimbekova, B.; Tolomushev, A.; Orazbaev, K. Research and development of a gravitational water vortex micro-HPP in the conditions of Kyrgyzstan. Energy Rep. 2023, 10, 544–557.

25. Zamora-Juárez, M.Á.; Guerra-Cobián, V.H.; Ferri no-Fierro, A.L.; Bruster-Flores, J.L.; Fonseca Ortiz, C.R.; López-Rebollar, B.M. Assessment of a prototype of gravitational water vortex turbine: experimental validation of efficiency. Clean Technol. Environ. Policy 2024, 26, 691–711.

26. Haryadi, H.; Subarjah, A.M.; Sugianto, S. Experimental study on 3D vortex gravitational turbine runner. AIP Conf. Proc. 2020, 2296, 020025 .

27. Saleem, A.S.; Cheema, T.A.; Ullah, R.; Ahmad, S.M.; Chattha, J.A.; Akbar, B.; Park, C.W. Parametric study of single-stage gravitational water vortex turbine with cylindrical basin. Energy 2020, 200, 117464.

28. Dhakal, S.; Timilsina, A.B.; Dhakal, R.; Fuyal, D.; Bajracharya, T.R.; Pandit, H.P.; Amatya, N.; Nakarmi, A.M. Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant. Renew. Sustain. Energy Rev. 2015, 48, 662–669.

29. Sritram, P.; Suntivarakorn, R. The efficiency comparison of hydro turbines for micro power plant from free vortex. Energies 2021, 14, 7961.

Downloads

Published

2025-04-10